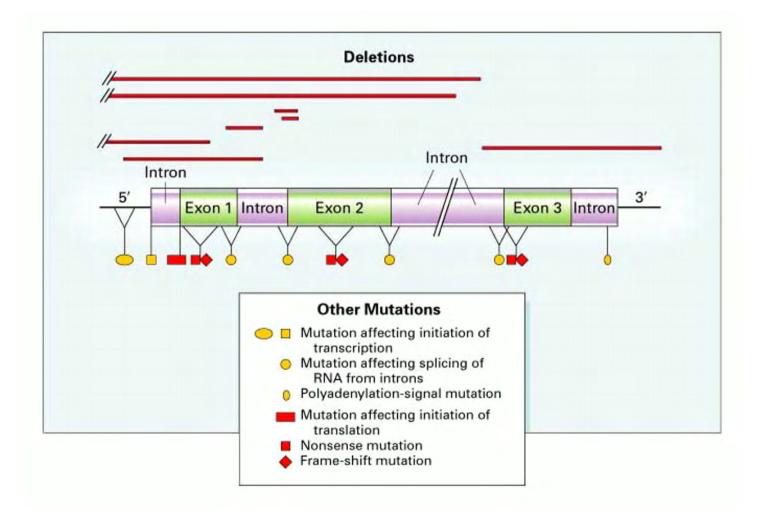
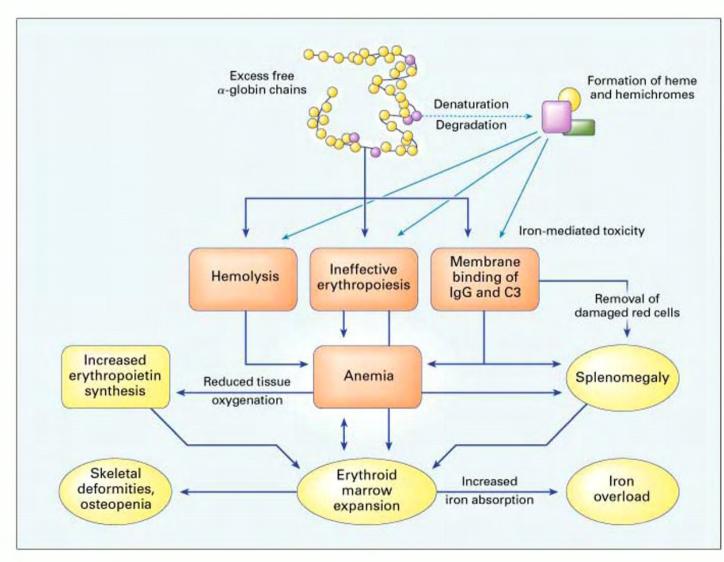
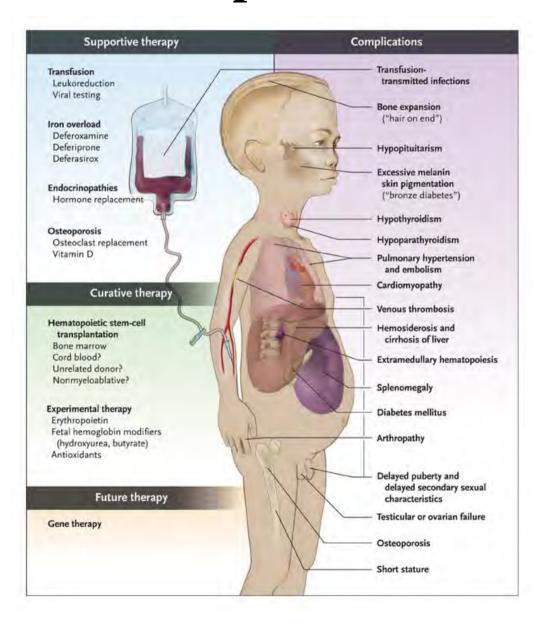
Non-malignant hematologic disorders associated arthropathies: hemoglobinopathy-associated musculoskeletal manifestations, hemophilia



divided into:


Thalassaemia Syndromes

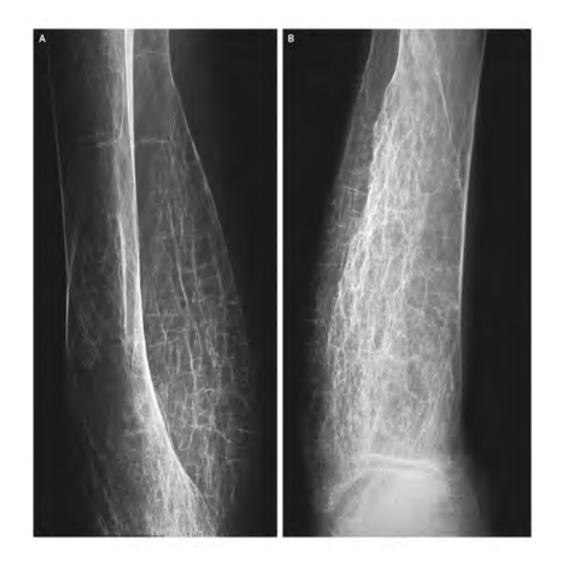
Variant Haemoglobins


The Normal Structure of the {beta}-Globin Gene and the Locations and Types of Mutations Resulting in {beta}-Thalassemia

Effects of excess production of free αglobin chains

Thalassemia and Treatment-Related Complications

Bone lesions in untransfused or undertransfused β-thalassemia major


Expansion of the bone marrow Fragility of the bones Osteoporosis Growth retardation

The typical facial appearance of a child with untreated b-thalassemia

W.S. Excellent Company Jonns and derived linear copyright © 2002 by W.S. Excellent Company

A Cobwebbing Trabecular Pattern

A Hair-on-End Skull

Compression fracturing of the vertebra

Coarse trabeculation and exaggerated biconvexity of the 5th metacarpal

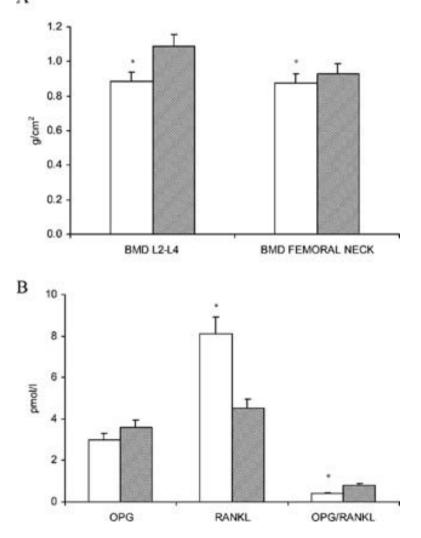
Extramedullary haematopoiesis

(a)

(b)

Epidural extension

Premature fusion of the epiphyses



Osteoporosis in optimally treated thalassemia patients

Bone marrow expansion Endocrine complications Iron overload and desferrioxamine Vitamin and trace mineral deficiencies Physical activity Genetic factors (A) The BMD values at lumbar and femoral level in thalassemics (empty columns) and controls (filled columns).

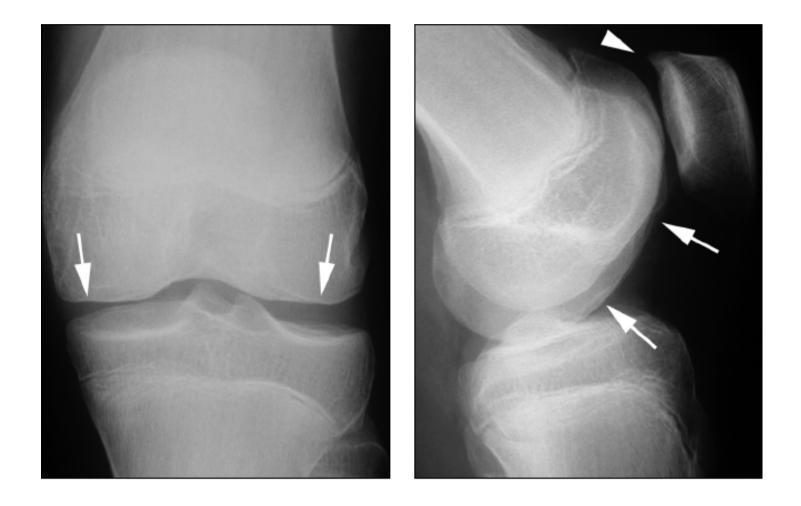
(B) The OPG, RANKL, and OPG/RANKL ratio values in

thalassemics (empty columns) and controls (filled columns). *p < 0.05.

Bone lesions associated with desferrioxamine toxicity in welltransfused and iron-chelated patients

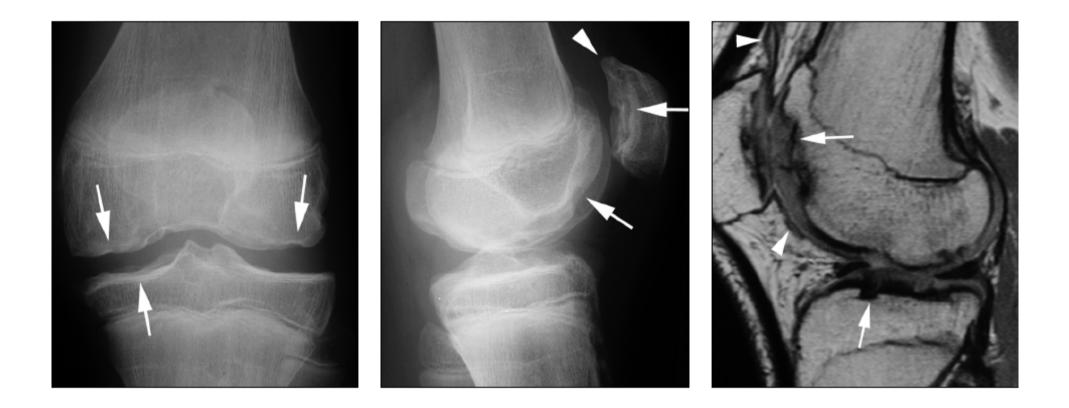
Irregularity of the physeal-metaphyseal junction Sclerosis of the metaphysis Sclerosis at the costochondral junction Platyspondyly Growth failure

DFX-induced skeletal dysplasia



(b)

DFX-induced skeletal dysplasia

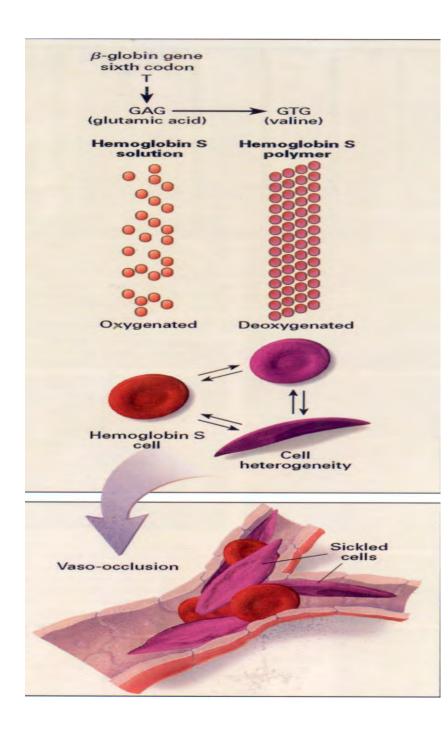


Patient				Radiographic Findings				
No.	Sex A		Symptoms ^b	Joint Effusion	Subchondral Irregularity	Patellar Beak		
1	М	11.0	Severe	Mild	Severe	Mild		
2	М	12.4	Severe	Mild	Mild	Absent		
3	М	15.5	Severe	Moderate	Mild	Mild		
4	М	13.4	Severe	Moderate	Moderate	Mild		
5	М	17.4	Severe	Mild	Mild	Mild		
6	М	9.9	Severe	Moderate	Moderate	Absent		
7	F	30.5	Mild	Mild	Absent	Mild		
8	F	32.8	Severe	Absent	Absent	Mild		
9	М	14.7	Absent	Absent	Mild	Absent		
10	F	17.3	Absent	Absent	Absent	Absent		
11	F	17.7	Mild	Absent	Mild	Absent		
12	F	17.9	Absent	Absent	Absent	Absent		
13	М	6.8	Mild ^c	Mild	Absent	Absent		
14	F	11.2	Absent	Absent	Mild	Absent		

	Patient 1 (13.7 yr)		Patient 2 (12.4 yr)		Patient 3 (15.5 yr)		Patient 4 (13.4 yr)		Patient 5 (17.8 yr)		Patient 6 (9.9 yr)	
Finding	Initial MRI	26-Mo Follow-Up	Initial MRI	20-Mo Follow-Up	Initial MRI	9-Mo Follow-Up	Initial MRI	13-Mo Follow-Up	Initial MRI	16-Mo Follow-Up	Initial MRI	14-Mo Follow-Up
Symptoms at MRI	Mild	Absent	Moderate	Absent	Severe	Mild	Moderate	Mild	Moderate	Absent	Moderate	Mild
MRI finding	11 25	1	1.00	1.000			100	1			1	£10.4
Joint effusion	Mild	Absent	Mild	Mild	Moderate	Mild	Moderate	Mild	Moderate	Mild	Severe	Moderate
Synovial thickening	Mild	Mild	Absent	Absent	Mild	Mild	Mild	Mild	Mild	Mild	Severe	Severe
Synovial enhancement	NA	NA	Absent	Absent	Mild	Mild	Mild	NA	Mild	Mild	Severe	Severe
Synovial bands	Mild	Mild	Mild	Mild	Mild	Mild	Mild	Mild	Mild	Mild	Mild	Moderate
Articular cartilage signal changes	Moderate	Moderate	Absent	Absent	Absent	Absent	Absent	Absent	Mild	Mild ^a	Moderate	Mild
Thickened cartilage ^b	Moderate	Severe	Absent	Absent	Absent	Absent	Mild	Mild	Mild	Mild	Mild	Mild

Radiography and MRI of Arthropathy of the Knees

Thalassemia with right-sided lumbar scoliosis



Sickle cell anemia

Normal Red blood cells hemoglobin are round and flexible.

Individuals with sickle cell disease, the abnormal hemoglobin forces the cells to lose their normally round and flexible shape, becoming distorted and rigid.

When viewed under a microscope, these abnormal cells may look like the C-shaped farm tool called a sickle.

Pathophysiology of sickle cell disease

 β_6 Glu \rightarrow Val

Deoxy Hb S polymer forms with low O_2 , depends on Hgb S concentration, low pH, high temperature, high 2,3-DPG

Under a variety of circumstances, different organs are susceptible:

spleen, renal medulla (papillary necrosis), & many other complications

Pathophysiology

- Red cells:
 - Shape change
 - Extracellular exposure of protein and glycolipids
 - Aberrant expression of adhesion molecules on stressed reticulocytes
- Activated endothelial cells
- Adherent leukocytes
- Multiple adhesion pathways involved

Complications from Sickle Cell Disease

- Chronic hemolytic anemia
- Acute splenic sequestration-spleen traps RBCs
- Aplastic crisis-bone marrow stops making RBCs
- Painful crises (bones and chest)
- Bacterial infections (children)
- Acute chest syndrome (children)
- Kidney failure
- Gallbladder stones and inflammation
- Avascular necrosis
- Pulmonary hypertension
- Stroke (children)

Acute bone problems in sickle cell disease

Vaso-occlusive crises Dactylitis Stress fracture Vertebral collapse Orbital compression syndrome Bone marrow necrosis Osteomyelitis

Sickle Cell Anemia Vaso-occlusive Events (Pain Crisis)

- Precipitating factors
 - Нурохіа
 - Acidosis
 - Fever
 - Infection
 - Dehydration
 - Exposure to cold

- Perceived factors
 - Exposure to cold 34%
 - Emotional stress
 10%
 - Physical exertion 7%
 - Pregnancy 5%
 - Alcohol consumption 4%
 - Not identified 40%

Sergeant, G. et al., Brit J. Haemat 1994: 87;586.

Sites of vaso-occlusive pain

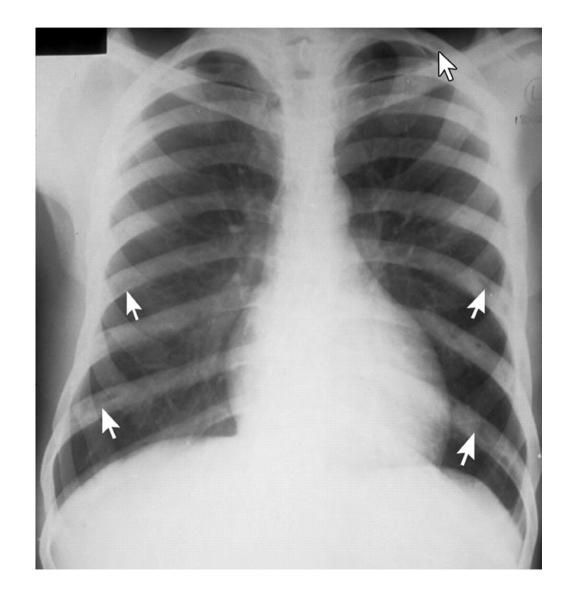
n= 183						
Site	Frequency	Bilateral				
Lumbar spine	49%					
Abdominal pain	32%					
Femur	30%	28%				
Knees	21%	68%				
Sternum	18%					
Ribs	18%	47%				
Shoulder	18%	53%				
Elbows	17%	45%				
Tibia/fibula	15%	57%				
Humerus	12%	44%				
Thoracic spine	12%					
Hips	11%	48%				
"All over"	1%					

Medullary bone infarcts in SCA

Bone infarction of the tibial diaphyses

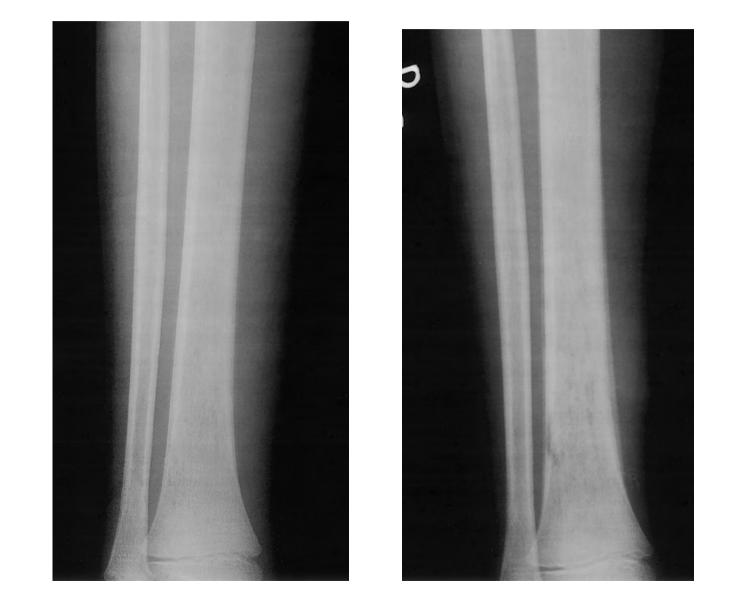
Increased bone density

Fish-mouth vertebral deformities


Vertebral end-plate concavity

H-shaped vertebral deformity

Multiple rib infarctions

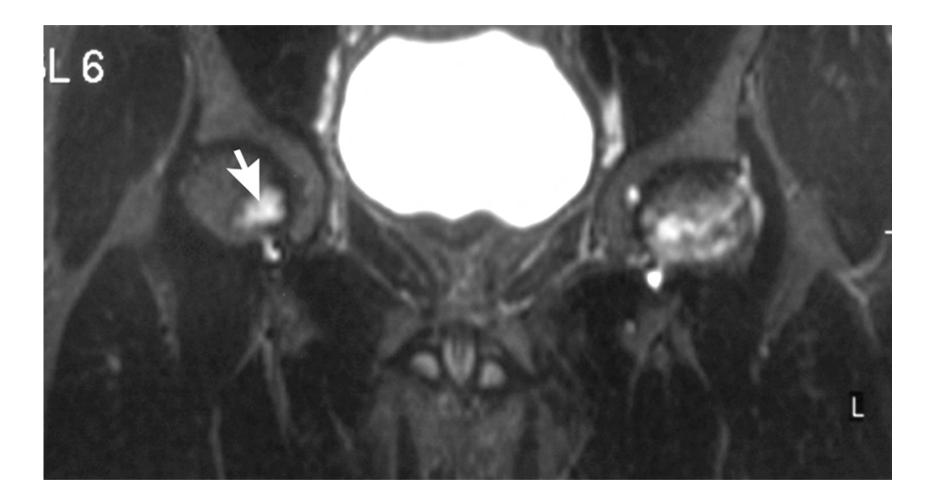

Dactylitis in the feet

Infectious complications of Sickle cell anemia

- Related to absent spleen
 - Pneumococcus infections
 - Hemophilus infections
 - Dramatically improved with the use of prophylactic penicillin in childhood
- Related to frequent instrumentation
 Staphyloccocal infections
- Related to tissue infarction
 - Osteomyelitis

Salmonella osteomyelitis

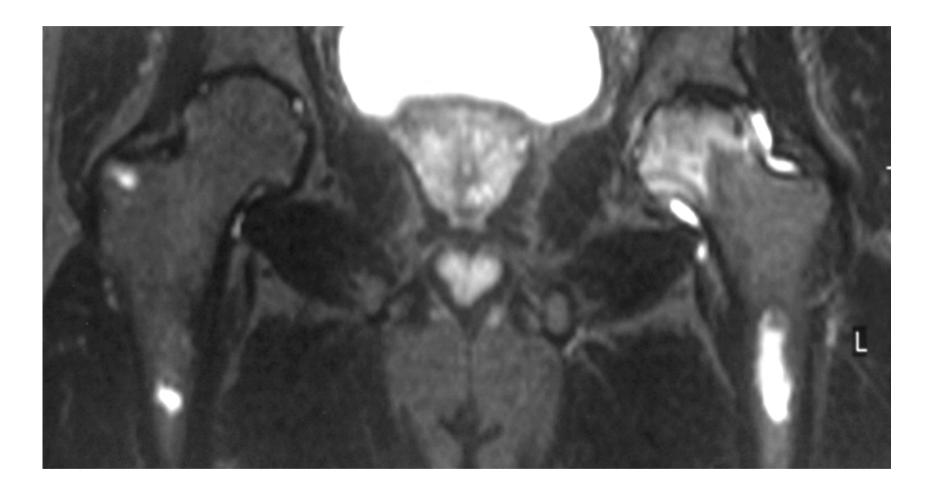
Chronic osteomyelitis



Chronic osteomyelitis in a 19-year-old woman with known homozygous sickle cell disease

Chronic bone problems in sickle cell disease

Osteonecrosis Osteoporosis Impaired growth Chronic arthritis Figure 14b. (a) Anteroposterior radiograph obtained in a 44-year-old man shows stage IV avascular necrosis in the left hip and a normal right hip.



Ejindu V C et al. Radiographics 2007;27:1005-1021

©2007 by Radiological Society of North America

Figure 14c. (a) Anteroposterior radiograph obtained in a 44-year-old man shows stage IV avascular necrosis in the left hip and a normal right hip.

Ejindu V C et al. Radiographics 2007;27:1005-1021

©2007 by Radiological Society of North America

Osteonecrosis of the femoral head

Hemophilia

- A hereditary disorder transmitted by the female to the male. These patients have a severe deficiency in blood clotting.
- Bleeding can occur spontaneously, after minor injury, or during a medical procedure, such as intravenous insertion.
- Bleeding can occur anywhere in the body, but bleeding into joints, deep muscles, urinary tract, and intracranial sites are the most common.

Types of Bleeding Disorders

- Hemophilia A (factor VIII deficiency)
- Hemophilia B (factor IX deficiency)

Incidence

- Hemophilia A: 1:5000 male births
- Hemophilia B: 1:30,000 male births

Type and Severity

- Normal factor VIII or IX level 50-150%
- Mild hemophilia
 - factor VIII or IX level 5-50%
- Moderate hemophilia
 - factor VIII or IX level 1-5%
- Severe hemophilia
 - factor VIII or IX level <1%

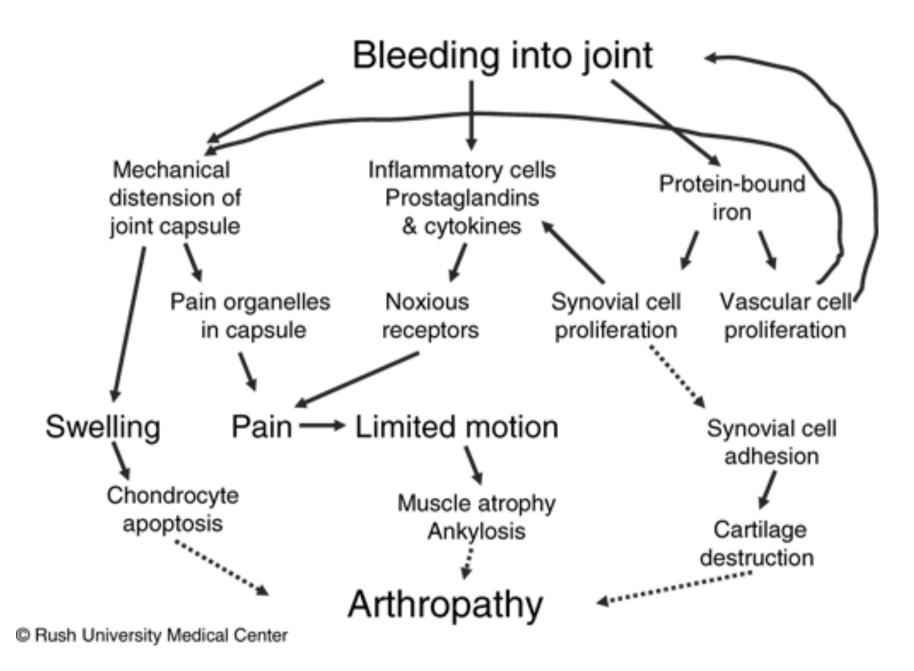
Types of Bleeds

- Joint bleeding hemarthrosis
- Muscle hemorrhage
- Soft tissue
- Life threatening-bleeding
- Other common bleeding

First Bleed/Diagnosis

- Mild
 - Often has bleeds at an earlier age but not identified till later in life, 3 to 14 years or older
- Moderate
 - usually before 2 years
- Severe
 - within first year

Joint Bleeds


- Most common bleeding manifestation
- Most common joint Knees, Ankles, Elbows
- Collection of blood in joint space may cause joint to feel hot
- Initial symptoms of "tingling" or "bubbling" sensation
- Early sign: reluctance to move, swelling and joint pain as bleeding progresses
- Affected joint held in flexed position
- Usually no visible cutaneous bruising
- Treat with replacement factor, rest, ice, compression and immobilization

Joint Bleeds

Complications Joint Bleeds

- Flexion contractures
- Joint arthritis / arthropathy
- Chronic pain
- Muscle atrophy

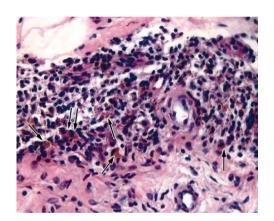
Background

- Mod-severe hemophiliacs develop 1st bleed as young as 2-5 years old
- Followed by hemarthrosis-synovitis-hemarthrosis cycle
 - Fe deposition \rightarrow synovitis \rightarrow hypertrophy
 - Rich vascularization \rightarrow rebleed \Rightarrow Target joint
- Target joint
 - Reduced range of motion
 - Muscle atrophy
 - Cumulative joint deformity

Hemophilic arthropathy

Advanced joint and muscle bleed

Hemophilic arthropathy in an 11-yearold boy with repetitive hemarthrosis



Hemophilic arthropathy

Hemophilic arthropathy

Chronic hemophilic arthropathy of the knee in a 35-year-old man with hemophilia A

Treatment Algorithm for Hemophiliac

Muscle Bleeding

- Second common bleeding manifestation
- Bleeding leg, thigh, calf, forearm, and groin create pressure on nerves
- Early sign: reluctance to move, swelling and pain as bleeding progresses
- Affected extremity held in flexed position
- Usually no visible cutaneous bruising
- Treat with replacement factor, rest, ice, compression and immobilization

Muscle Bleeding

Complications Muscle Bleeds

- Compartment syndrome
- Neurologic impairment